32 research outputs found

    Necessary and Sufficient Restrictions for Existence of a Unique Fourth Moment of a Univariate GARCH(p,q) Process

    Get PDF
    A univariate GARCH(p,q) process is quickly transformed to a univariate autoregressive moving-average process in squares of an underlying variable. For positive integer m, eigenvalue restrictions have been proposed as necessary and sufficient restrictions for existence of a unique mth moment of the output of a univariate GARCH process or, equivalently, the 2mth moment of the underlying variable. However, proofs in the literature that an eigenvalue restriction is necessary and sufficient for existence of unique 4th or higher even moments of the underlying variable, are either incorrect, incomplete, or unecessarily long. Thus, the paper contains a short and general proof that an eigenvalue restriction is necessary and sufficient for existence of a unique 4th moment of the underlying variable of a univariate GARCH process. The paper also derives an expression for computing the 4th moment in terms of the GARCH parameters, which immediately implies a necessary and sufficient inequality restriction for existence of the 4th moment. Because the inequality restriction is easily computed in a finite number of basic arithmetic operations on the GARCH parameters and does not require computing eigenvalues, it provides an easy means for computing "by hand" the 4th moment and for checking its existence for low-dimensional GARCH processes. Finally, the paper illustrates the computations with some GARCH(1,1) processes reported in the literature.state-space form, Lyapunov equations, nonnegative and irreducible matrices

    Estimated U.S. Manufacturing Production Capital and Technology Based on an Estimated Dynamic Structural Economic Model

    Get PDF
    Production capital and total factor productivity or technology are fundamental to understanding output and productivity growth, but are unobserved except at disaggregated levels and must be estimated before being used in empirical analysis. In this paper, we develop estimates of production capital and technology for U.S. total manufacturing based on an estimated dynamic structural economic model. First, using annual U.S. total manufacturing data for 1947-1997, we estimate by maximum likelihood a dynamic structural economic model of a representative production firm. In the estimation, capital and technology are completely unobserved or latent variables. Then, we apply the Kalman filter to the estimated model and the data to compute estimates of model-based capital and technology for the sample. Finally, we describe and evaluate similarities and differences between the model-based and standard estimates of capital and technology reported by the Bureau of Labor Statistics.Kalman filter estimation of latent variables

    Estimated U.S. Manufacturing Production Capital and Technology Based on an Estimated Dynamic Economic Model

    Get PDF
    Production capital and technology, fundamental to understanding output and productivity growth, are unobserved except at disaggregated levels and must be estimated prior to being used in empirical analysis. We develop and apply a new estimation method, based on advances in economics, statistics, and applied mathematics, which involves estimating a structural dynamic economic model of a representative production firm and using the estimated model to compute Kalman-filtered estimates of capital and technology for the sample period. We apply the method to annual data from 1947-97 for U.S. total manufacturing and compare the estimates with those reported by the Bureau of Labor Statistics.Kalman filter estimation of unobserved state variables

    Testing Substitution Bias of the Solow-Residual Measure of Total Factor Productivity Using CES-Class Production Functions

    Get PDF
    Total factor productivity (TFP) computed as Solow-residuals could be subject to input-substitution bias for two reasons. First, the Cobb-Douglas (CD) production function restricts all input substitutions to one. Second, observed inputs generally differ from optimal inputs, so that inputs observed in a sample tend to move not just due to substitution effects but for other reasons as well. In this paper, we describe using the multi-step perturbation method (MSP) to compute and evaluate total factor productivity (TFP) based on any k+1 times differentiable production function, and we illustrate the method for a CES-class production functions. We test the possible input-substitution bias of the Solow-residual measure of TFP in capital, labor, energy, materials, and services (KLEMS) inputs data obtained from the Bureau of Labor Statistics for U.S. manufacturing from 1949 to 2001. We proceed in three steps: (1) We combine the MSP method with maximum likelihood estimation to determine a best 4th-order approximation of a CES-class production function. The CES class includes not only the standard CES production functions but also the so called tiered CES production functions (TCES), in which the prespecified groups of inputs can have their own input-substitution elasticities and input-cost shares are parameterized (i) tightly as constants, (ii) moderately as smooth functions, and (iii) loosely as successive averages. (2) Based on the best estimated production function, we compute the implied best TFP evaluated at the computed optimal inputs. (3) For the data, we compute Solow-residual TFP and compare it with the best TFP. The preliminary results show that the MSP method can produce almost double precision accuracy, and the results reject a single constant elasticity of substitution among all inputs. For this data, the Solow-residual TFP is on average .1% lower, with a .6% standard error, than the best TFP and, hence, is very slightly downward biased, although the sampling-error uncertainty dominates this conclusion. In further work, we shall attempt to reduce this uncertainty with further testing based on more general CES-class production functions, in which each input has its own elasticity of substitution, and we shall use more finely estimated parametersTaylor-series approximation, model selection, numercial solution, tiered CES production function

    Multi-Step Perturbation Solution of Nonlinear Rational Expectations Models

    Get PDF
    This paper develops and illustrates the multi-step generalization of the standard single-step perturbation (SSP) method or MSP. In SSP, we can think of evaluating at x the computed approximate solution based on x0, as moving from x0 to x in "one big step" along the straight-line vector x-x0. By contrast, in MSP we move from x0 to x along any chosen path, continuous, curved-line or connected-straight-line, in h steps of equal length 1/h. If at each step we apply SSP, Taylor-series theory says that the approximation error per step is 0(e) = h^(-k-1), so that the total approximation error in moving from x0 to x in h steps is 0(e) = h^(-k). Thus, MSP has two major advantages over SSP. First, both SSP and MSP accuracy declines as the approximation point, x, moves from the initial point, x0, although only in MSP can the decline be countered by increasing h. Increasing k is much more costly than increasing h, because increasing k requires new derivations of derivatives, more computer programming, more computer storage, and more computer run time. By contrast, increasing h generally requires only more computer run time and often only slightly more. Second, in SSP the initial point is usually a nonstochastic steady state but can sometimes also be set up in function space as the known exact solution of a close but simpler model. This "closeness" of a related, simpler, and known solution can be exploited much more explicitly by MSP, when moving from x0 to x. In MSP, the state space could include parameters, so that the initial point, x0, would represent the simpler model with the known solution, and the final point, x, would continue to represent the model of interest. Then, as we would move from the initial x0 to the final x in h steps, the state variables and parameters would move together from their initial to final values and the model being solved would vary continuously from the simple model to the model of interest. Both advantages of MSP facilitate repeatedly, accurately, and quickly solving a NLRE model in an econometric analysis, over a range of data values, which could differ enough from nonstochastic steady states of the model of interest to render computed SSP solutions, for a given k, inadequately accurate. In the present paper, we extend the derivation of SSP to MSP for k = 4. As we did before, we use a mixture of gradient and differential-form differentiations to derive the MSP computational equations in conventional linear-algebraic form and illustrate them with a version of the stochastic optimal one-sector growth model.numerical solution of dynamic stochastic equilibrium models

    Further Model-Based Estimates of U.S. Total Manufacturing Production Capital and Technology, 1949-2005

    Get PDF
    Production capital and technology (i.e., total factor productivity) in U.S. manufacturing are fundamental for understanding output and productivity growth of the U.S. economy but are unobserved at this level of aggregation and must be estimated before being used in empirical analysis. Previously, we developed a method for estimating production capital and technology based on an estimated dynamic structural economic model and applied the method using annual SIC data for 1947-1997 to estimate production capital and technology in U.S. total manufacturing. In this paper, we update this work by reestimating the model and production capital and technology using annual SIC data for 1949-2001 and partly overlapping NAICS data for 1987-2005.Kalman filter estimation of latent variables

    Forecasting Quarterly German GDP at Monthly Intervals Using Monthly IFO Business Conditions Data

    Get PDF
    The paper illustrates and evaluates a Kalman filtering method for forecasting German real GDP at monthly intervals. German real GDP is produced at quarterly intervals but analysts and decision makers often want monthly GDP forecasts. Quarterly GDP could be regressed on monthly indicators, which would pick up monthly feedbacks from the indicators to GDP, but would not pick up implicit monthly feedbacks from GDP onto itself or the indicators. An efficient forecasting model which aims to incorporate all significant correlations in monthly-quarterly data should include all significant monthly feedbacks. We do this with estimated VAR(2) models of quarterly GDP and up to three monthly indicator variables, estimated using a Kalman-filtering-based maximum-likelihood estimation method. Following the method, we estimate monthly and quarterly VAR(2) models of quarterly GDP, monthly industrial production, and monthly, current and expected, business conditions. The business conditions variables are produced by the Ifo Institute from its own surveys. We use early in-sample data to estimate models and later out-of-sample data to produce and evaluate forecasts. The monthly maximum-likelihood-estimated models produce monthly GDP forecasts. The Kalman filter is used to compute the likelihood in estimation and to produce forecasts. Generally, the monthly German GDP forecasts from 3 to 24 months ahead are competitive with quarterly German GDP forecasts for the same time-span ahead, produced using the same method and the same data in purely quarterly form. However, the present mixed-frequency method produces monthly GDP forecasts for the first two months of a quarter ahead which are more accurate than one-quarter-ahead GDP forecasts based on the purely-quarterly data. Moreover, quarterly models based on purely-quarterly data generally cannot be transformed into monthly models which produce equally accurate intra-quarterly monthly forecasts.mixed-frequency data, VAR models, maximum-likelihood estimation, Kalman filter

    Linear identification of linear rational-expectations models by exogenous variables reconciles Lucas and Sims

    No full text
    Linear rational-expectations models (LREMs) are conventionally "forwardly" estimated as follows. Structural coefficients are restricted by economic restrictions in terms of deep parameters. For given deep parameters, structural equations are solved for "rational-expectations solution" (RES) equations that determine endogenous variables. For given vector autoregressive (VAR) equations that determine exogenous variables, RES equations reduce to reduced-form VAR equations for endogenous variables with exogenous variables (VARX). The combined endogenous-VARX and exogenous-VAR equations comprise the reduced-form overall VAR (OVAR) equations of all variables in a LREM. The sequence of specified, solved, and combined equations defines a mapping from deep parameters to OVAR coefficients that is used to forwardly estimate a LREM in terms of deep parameters. Forwardly-estimated deep parameters determine forwardly-estimated RES equations that Lucas (1976) advocated for making policy predictions in his critique of policy predictions made with reduced-form equations. Sims (1980) called economic identifying restrictions on deep parameters of forwardly-estimated LREMs "incredible", because he considered in-sample fits of forwardly-estimated OVAR equations inadequate and out-of-sample policy predictions of forwardly-estimated RES equations inaccurate. Sims (1980, 1986) instead advocated directly estimating OVAR equations restricted by statistical shrinkage restrictions and directly using the directly-estimated OVAR equations to make policy predictions. However, if assumed or predicted out-of-sample policy variables in directly-made policy predictions differ significantly from in-sample values, then, the out-of-sample policy predictions won't satisfy Lucas's critique. If directly-estimated OVAR equations are reduced-form equations of underlying RES and LREM-structural equations, then, identification 2 derived in the paper can linearly "inversely" estimate the underlying RES equations from the directly-estimated OVAR equations and the inversely-estimated RES equations can be used to make policy predictions that satisfy Lucas's critique. If Sims considered directly-estimated OVAR equations to fit in-sample data adequately (credibly) and their inversely-estimated RES equations to make accurate (credible) out-of-sample policy predictions, then, he should consider the inversely-estimated RES equations to be credible. Thus, inversely-estimated RES equations by identification 2 can reconcile Lucas's advocacy for making policy predictions with RES equations and Sims's advocacy for directly estimating OVAR equations. The paper also derives identification 1 of structural coefficients from RES coefficients that contributes mainly by showing that directly estimated reduced-form OVAR equations can have underlying LREM-structural equations
    corecore